top of page

News to help your R&D in artificial intelligence, machine learning, robotics, computer vision, smart hardware

As an Amazon Associate I earn

from qualifying purchases

Writer's picturemorrislee

Get object pose using pre-trained synthetic data and no ground truth labels with RKHSPose

Get object pose using pre-trained synthetic data and no ground truth labels with RKHSPose


Pseudo-keypoints RKHS Learning for Self-supervised 6DoF Pose Estimation

arXiv paper abstract https://arxiv.org/abs/2311.09500



This paper addresses the simulation-to-real domain gap in 6DoF PE, and proposes a novel self-supervised keypoint radial voting-based 6DoF PE framework, effectively narrowing this gap using a learnable kernel in RKHS.


... formulate this domain gap as a distance in high-dimensional feature space, distinct from previous iterative matching methods.


... propose an adapter network, which evolves the network parameters from the source domain, which has been massively trained on synthetic data with synthetic poses, to the target domain, which is trained on real data.


Importantly, the real data training only uses pseudo-poses estimated by pseudo-keypoints, and thereby requires no real groundtruth data annotations.


RKHSPose achieves state-of-the-art performance on three commonly used 6DoF PE datasets


... also compares favorably to fully supervised methods on all six applicable BOP core datasets ...



Please like and share this post if you enjoyed it using the buttons at the bottom!


Stay up to date. Subscribe to my posts https://morrislee1234.wixsite.com/website/contact

Web site with my other posts by category https://morrislee1234.wixsite.com/website



38 views0 comments

Comments


ClickBank paid link

bottom of page