Real-time object detector on the edge using better augmentation and FCOS with EdgeYOLO
Real-time object detector on the edge using better augmentation and FCOS with EdgeYOLO
EdgeYOLO: An Edge-Real-Time Object Detector
arXiv paper abstract https://arxiv.org/abs/2302.07483
arXiv PDF paper https://arxiv.org/pdf/2302.07483.pdf
... proposes an efficient, low-complexity and anchor-free object detector based on the state-of-the-art YOLO framework, which can be implemented in real time on edge computing platforms.
... develop an enhanced data augmentation method to effectively suppress overfitting during training, and design a hybrid random loss function to improve the detection accuracy of small objects.
Inspired by FCOS, a lighter and more efficient decoupled head is proposed, and its inference speed can be improved with little loss of precision.
... baseline model can reach the accuracy of 50.6% AP50:95 and 69.8% AP50 in MS COCO2017 dataset, 26.4% AP50:95 and 44.8% AP50 in VisDrone2019-DET dataset, and it meets real-time requirements (FPS>=30) on edge-computing device Nvidia Jetson AGX Xavier.
... also designed lighter models with less parameters for edge computing devices with lower computing power, which also show better performances.
... source code, hyper-parameters and model weights are all available at ... https://github.com/LSH9832/edgeyolo
Please like and share this post if you enjoyed it using the buttons at the bottom!
Stay up to date. Subscribe to my posts https://morrislee1234.wixsite.com/website/contact
Web site with my other posts by category https://morrislee1234.wixsite.com/website
تعليقات