top of page

News to help your R&D in artificial intelligence, machine learning, robotics, computer vision, smart hardware

As an Amazon Associate I earn

from qualifying purchases

Super-resolution image with unknown degradation by iterative kernel and estimate noise with IKR-Net

Writer's picture: morrisleemorrislee

Super-resolution image with unknown degradation by iterative kernel and estimate noise with IKR-Net


Deep learning-based blind image super-resolution with iterative kernel reconstruction and noise estimation



Blind single image super-resolution (SISR) is a challenging task in image processing due to the ill-posed nature of the inverse problem.


... propose IKR-Net (Iterative Kernel Reconstruction Network) for blind SISR.


In the proposed approach, kernel and noise estimation and high-resolution image reconstruction are carried out iteratively using dedicated deep models.


The iterative refinement provides significant improvement in both the reconstructed image and the estimated blur kernel even for noisy inputs.


IKR-Net provides a generalized solution that can handle any type of blur and level of noise in the input low-resolution image.


IKR-Net achieves state-of-the-art results in blind SISR, especially for noisy images with motion blur.



Please like and share this post if you enjoyed it using the buttons at the bottom!


Stay up to date. Subscribe to my posts https://morrislee1234.wixsite.com/website/contact 

Web site with my other posts by category https://morrislee1234.wixsite.com/website 



36 views0 comments

Comments


ClickBank paid link

bottom of page